A New Eco-Friendly Photo Resist Stripping Technology Using "Ethylene Carbonate"
نویسندگان
چکیده
Recently, it is demanded to form a high performance pattern on an enlarged circuit board in a low cost in the process to produce LCD devices. In the part of upgrading the performance, the materials are reexamined such as Al or Mo to Cu. Furthermore, in the process of reexamining the materials, it is demanded that such materials are low in environmental load. Therefore, we examined if it is possible to reuse Ethylene Carbonate, a photo resist stripper, with low environmental load by decomposing dissolved photo resist using ozone gas. Furthermore, we examined if it is possible to apply Ethylene Carbonate without damaging the next generation wiring materials. As a result, we were able to identify the most efficient condition for ozone gas to recycle Ethylene Carbonate used as a photo resist stripper. Ethylene Carbonate was not only suitable for Al · Mo wiring, but was also suitable for the next generation Cu wiring. Therefore by using Ethylene Carbonate for the new and old process for stripping photo resists, it is able to reduce the environmental load and also reduce the cost for stripping. key words: eco-friendly new resist stripper
منابع مشابه
Green Synthesis of N-pyrroles in Water via Using ZrOCl2.8H2O as an Efficient and Eco-Friendly Catalyst
A simple and efficient protocol for the synthesis of N-substituted pyrroles from one-pot condensation reaction of 2, 5-dimethoxytetrahydrofuran with aryl/alkyl, sulfonyl and acyl amines in the presence of ZrOCl2•8H2O in water has been developed. This new method has the advantages of simple experimental and work-up procedure, high to excellent yields, easy availability, economical, eco-frien...
متن کاملGreen Synthesis of Nanoparticles for Using as Antibacterial Materials
Nowadays, researchers need to produce eco-friendly nanoparticles through synthetic methods without toxic and hazardous chemicals. Environmental pollutions, such as chemical and physical contaminations can be caused by various chemical and physical processes during nanoparticles production. Therefore, researchers have made many efforts to synthesize eco-friendly Nano-materials using enzymes, mi...
متن کاملTannic acid: A Green Catalyst for the Eco-friendly Synthesis of 2,3-dihydroquinazolin-4(1H)-ones under Solvent Free Conditions
A new, facile, cost effective, and eco-friendly protocol is reported for the synthesis of 2,3-dihydroquinazoline-4-(1H)-ones exploring tannic acid as a novel, inexpensive, andbiodegradable catalyst. A variety of dihydroquinazolins were prepared from aromatic aldehydesand anthranilamide using catalytic amount of tannic acid under solvent free conditions.Operational simplicity, high yield, and hi...
متن کاملSimple, Practical and Eco-friendly Reduction of Nitroarenes with Zinc in the Presence of olyethylene Glycol Immobilized on Silica Gel as a New Solid–liquid Phase Transfer Catalyst in Water
Polyethylene glycol was easily grafted to silica gel and used as a solid–liquid phase transfer catalyst in the reduction of aromatic nitro compounds. This silica-grafted polyethylene glycol is proved to be an efficient heterogeneous catalyst in the reduction of nitroarenes to the corresponding aromatic amines with zinc powder in water. The reduction reactions proceeded efficiently with exce...
متن کاملFluorinated ethylene-propylene: a complementary alternative to PDMS for nanoimprint stamps.
Polydimethylsiloxane (PDMS) is used by many for nanoimprint applications due to its affordability, ease of preparation, mechanical flexibility, compatibility with imprint resists and transparency to UV light. However PDMS is notoriously flexible, tacky and permeable to air. Here fluorinated ethylene-propylene (FEP) is considered as a viable and versatile alternative material for nanoimprint sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 93-C شماره
صفحات -
تاریخ انتشار 2010